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Many crystallographic problems are reduced to the optimization of some

functional. In most cases, this functional is expressed in terms of structure

factors and depends on a large number of variables; an example is the

re®nement of atomic models. Calculation of the functional derivatives, necessary

for different optimization methods, is a time-consuming procedure. Previously, a

technique to calculate the exact gradient of any crystallographic functional for

the time equal to that for a single-function-value calculation has been proposed

[Lunin & Urzhumtsev (1985). Acta Cryst. A41, 327±333]. Currently, a similar

scheme is proposed to calculate the exact matrix of the second derivatives of

these functionals. The accuracy of this matrix is crucial for the calculation of the

inverted matrix, which can be used in optimization methods of the second order.

1. Notation

In what follows, vectors are presented by their coordinates in

columns and T stands for the transposition of vectors and

matrices.

x � �x1; . . . ; xN�T : N-dimensional vector of parameters;

y � �y1; . . . ; yM�T � �y1�x1; . . . ; xN�; . . . ; yM�x1; . . . ; xN��T : M-

dimensional vector function of parameters x1; . . . ; xN ;

R�y1; . . . ; yM�: function of variables y1; . . . ; yM;

rxR��@R=@x1; . . . ; @R=@xN�T;ryR��@R=@y1; . . . ; @R=@yM�T :

gradients of the function R with respect to variables x and y;

�dy=dx� �

@y1=@x1 @y2=@x1 . . . @yM=@x1

@y1=@x2 @y2=@x2 . . . @yM=@x2

..

. ..
. ..

. ..
.

@y1=@xN @y2=@xN . . . @yM=@xN

0BBBB@
1CCCCA;

�H� � �xR � r2
xR

�

@2R=@x1@x1 @2R=@x2@x1 . . . @2R=@xN@x1

@2R=@x1@x2 @2R=@x2@x2 . . . @2R=@xN@x2

..

. ..
. ..

. ..
.

@2R=@x1@xN @2R=@x2@xN . . . @2R=@xN@xN

0BBBB@
1CCCCA:

2. Introduction

Further development of the software for the re®nement

of atomic molecular models includes several aspects like

elaboration of convenient user-friendly interfaces, suggestions

for new re®nement criteria and use of more sophisticated

optimization algorithms. Recently, several groups reported

some advances in the calculation of an approximate matrix of

the second derivatives (Hessian or normal matrix) for crys-

tallographic criteria (Murshudov et al., 1997; Templeton, 1999;

Tronrud, 1999), which can eventually be used in optimization

methods of the second order. These works uncover several

questions. First, these algorithms have been developed for

some particular criteria and it would be interesting to gener-

alize them if possible. Then, the second-order minimization

methods need an inverted Hessian matrix with an inversion

that is very sensitive to approximations; as a consequence,

algorithms for the calculation of the exact Hessian matrix must

be developed in this case. Finally, crystallographic re®nement

uses combined minimization criteria and the algorithms

developed should be completed by the algorithms to calculate

such additional contributions from geometric and other terms.

Known methods for the optimization (in what follows only

the minimization will be considered) of functions in multi-

dimensional space do not allow their minima to be found

directly from the starting point and are iterative: they need to

verify the function value in several points of the search space

before arriving at the result. These methods can be divided in

groups according to the order of the derivatives of the func-

tion used during the search. The higher the order of the

calculated derivatives, the more information is used, and the

number of iterations necessary to ®nd the solution (or to

approach it equally well) is smaller. However, the computer

time necessary to carry out every minimization cycle becomes

larger and a choice of an optimal method depends on each

case.
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The methods that are based on the function values only

(exhaustive search, Monte Carlo, simplex method, coordinate

descent, simple iteration etc.) check the function value in a set

of points chosen in some way, either random or initially

prescribed.

A series of gradient minimization methods is based on the

iterative recalculation of the descent direction as a linear

combination of the antigradient with the previously de®ned

directions and a parameter shift along them. For the conju-

gate-gradient methods, these directions are orthogonal or, in

the general case, conjugated (orthogonal with a given matrix),

giving the name for this group of methods.1 In a space of a

®nite dimension N, such a property is a guarantee that the

result will be found by N iterations.

Let qn stand for the point in the parameter space found

after the nth iteration, rn stands for the corresponding gradient

of the function R to be minimized, sn stands for the corre-

sponding direction of a one-dimensional minimization and dn

stands for the correction of the parameters at this iteration.

The basic formulae for the conjugate-gradient method contain

the Hessian matrix [H] used to calculate the correction coef-

®cient �n and the optimal step �n:

Initial point

Gradient in the current point

Correction coefficient for the search direction

Search direction

Optimal step along the search direction

Parameter shift

New point in the search space �parameter values�

n � 0; q0; s0 � 0;�0 � 0

rn � ÿrR�qn�

�n � rT
n �H�sn=sT

n �H�sn

sn�1 � rn ÿ �nsn

�n�1 � sT
n�1rn=sT

n�1�H�sn�1

dn�1 � �n�1sn�1

qn�1 � qn � dn�1:

�1�
However, one does not need to calculate explicitly all N2

components of the matrix [H] but only its product by a vector,

i.e. N values (see xx4 and 5 below).

Naturally, for non-quadratic functions, (1) gives only esti-

mations for the optimal coef®cients and the step. A number

of alternative approximations are known and the results

obtained with different formulae are exactly the same for

quadratic functions but can be different in the general case. A

comparison of some gradient methods for crystallographic

re®nement of atomic models has been performed by Tronrud

(1992).

The knowledge of the second derivatives (Hessian or

normal matrix) allows for a quadratic function of any number

of variables to get the answer from any starting point without

iterations. Methods based on the second derivatives like the

Newton method use the approximation of a function by a

quadratic one but here minimization again became iterative.

In these methods, one does not need the matrix itself but the

product of the inverse matrix by a vector (gradient of the

function). Therefore, the computational price of every step of

the Newton method seems to be much higher because of these

operations.

Summarizing, it can be noted that the matrix of the second

derivatives can be used for the minimization of a functional in

three different aspects:

(i) in gradient methods in order to calculate the direction of

the minimization;

(ii) in gradient methods in order to estimate the step of

the displacement along a chosen direction in an N-dimen-

sional space (one-dimensional search);

(iii) in minimization methods of the second order or higher;

while its explicit calculation is necessary only for the latter.

There exist some other applications of the Hessian matrix, for

example its use as a source of the accuracy of information.

Neither these applications nor the problem of the matrix

inversion are discussed here.

3. Latest developments

Owing to a very high dimensionality of the space of param-

eters for macromolecular atomic models, their re®nement is

usually performed by gradient methods, at least at the end of

re®nement. However, some re®nement programs, developed

originally for small molecules (for example, Hansen &

Coppens, 1978; Sheldrick & Schneider, 1997) do use the

methods of second order where the direct-matrix calculation

needs of the order of MN2 operations (derivative of the

contribution of every re¯ection with respect to every couple of

parameters). Here N is the number of atomic parameters and

M is the number of structure factors. In order to gain CPU

time, some authors use a sparse matrix (Sussman et al., 1977;

Hendrickson & Konnert, 1980; Dodson, 1981; Guillot et al.,

2001). A fast calculation of the full matrix of the second

derivatives for the crystallographic criteria with the atomic

parameters (coordinates, temperature factors, occupancies) as

independent variables were discussed recently. One of these

works (Templeton, 1999) is based on a statistical approach

and the two others (Murshudov et al., 1997; Tronrud, 1999)

developed the FFT technique suggested for this goal by

Agarwal (1978).

In the case of the standard crystallographic criterion,

weighted least-squares ®t of the magnitudes

R�q� � 1
2

P
h

w�h��jF�q; h�j ÿ Fo�h��2 �2�

with atomic parameters q as independent variables, Tronrud

(1999) proposed a practical algorithm that needs

THT � C1N2 � C2M ln M �3�

operations to calculate the principal part S
�jk�
1 of the matrix

1 It can be noted that, in the original conjugate-gradient method (Lanczos,
1952; Hestenes & Stiefel, 1952), the conjugated vectors are the minimization
directions and not the gradients, which are simply orthogonal.



@2R=@qj@qk �
P

h

w�h�@jF�q; h�j=@qj@jF�q; h�j=@qk

�P
h

w�h��jF�q; h�j ÿ Fo�h��@2jF�q; h�j=@qj@qk�

� S
�jk�
1 � S

�jk�
2 �4�

traditionally neglecting the second term S
�jk�
2 with

@2jF�q; h�j=@qj@qk. Here again N is the number of atomic

parameters, M is the number of structure factors, and C1 and

C2 are universal constants that depend neither on N nor on M.

Another important feature of Tronrud's (1999) algorithm is

that it allows calculation of the matrix element by element and

does not need to keep the whole matrix (N 2 elements) at

the same time in computer memory. Similar formulae were

derived by Murshudov et al. (1997) for the case of the

maximum-likelihood (ML) criterion.

The following questions arise:

(i) which are the features allowing such fast calculation of

the matrix in these cases?

(ii) is the suggested way of matrix calculation valid for other

criteria depending on structure factors?

(iii) can better results be obtained in some particular cases?

More questions arise from the fact that the matrix inversion is,

in general, very sensitive to different approximations, espe-

cially when some eigenvalues are close to 0, which is the case

(Cowtan & Ten Eyck, 1998; Ten Eyck, 1999). In consequence,

the approximate matrices discussed above could be used for

different estimations, however, in order to use correctly the

second-order minimization methods, the exact matrices should

be available (unless an algorithm is developed to calculate

directly the inverted matrix without the calculation of the

direct one). These extra questions are:

(iv) is it possible to calculate rapidly the exact matrix of the

second derivatives with respect to atomic parameters for a

least-squares criterion?, for the ML criterion?, in the general

case?

(v) is this possible in the general case when the independent

parameters are not the atomic coordinates but some gener-

alized ones?

4. Fast differentiation algorithm

Traditionally, it is considered that gradient methods are much

more time consuming than the methods without derivatives,

and that generally every computation of a gradient needs

about N times CPU more than a single value of the function, N

being the number of variables. However, several groups (e.g.

Baur & Strassen, 1983; Kim et al., 1984) independently have

shown the following result:

Fast differentiation algorithm (FDA). For any function of

N variables, calculation of a single value of which takes the

time T, an algorithm exists to calculate its exact gradient faster

than 4T, independent of the number N of variables.

The scheme proposed gives not only the time estimation but

a practical technique of how a fast algorithm for the gradient,

calculated without any approximation, can be produced from

an algorithm for the function calculation. The basic idea is

essentially that one should not try to derive direct relations

linking the minimized functional and the initial parameters; on

the contrary, it is necessary to calculate the derivatives using

the chain rule, descending on the way back exactly by the same

intermediate steps that were used in the direct method of the

function calculation.

The constant `4' is a upper theoretical limit estimated for

the worst case. In practice, this constant approaches 1. Since

many expressions are exactly the same for the calculation of

the function and of its gradient, the use of computer memory

can save more CPU time and practical estimations with the

program FROG (Urzhumtsev et al., 1989) showed that the

total time to calculate the function and its gradient is 1.5T and

not 5T (T for the function calculation plus 4T for its gradient).

From the FDA, the following conclusion can easily be

derived:

FDA: conclusion 1. For any function of N variables,

calculation of a single value of which takes the time T, an

algorithm exists to calculate its exact derivative along a given

direction faster than 4T, independent of the number N of

variables and without a gradient calculation.

For gradient minimization procedures, this observation

allows, as was realised in FROG, at any point the calculation

of the function and its derivative along the search direction

and therefore to approximate better (by a polynomial of the

third degree) the function and eventually to avoid some local

minima.

Since the product of the matrix of the second derivatives

[H] in a given direction s can be interpreted as a gradient of

the scalar product of two vectors, the given direction s and the

gradient rf :

�H�s � r�rf � s�; �5�
the following conclusion relevant to the problem of this paper

is evident:

FDA: conclusion 2. For any function of N variables,

calculation of a single value of which takes the time T, an

algorithm exists to calculate the exact product of the matrix of

the second derivatives by a given direction faster than 20T,

independent of the number N of variables.

Again, in practice, when some common expressions can be

saved in memory, the time to calculate all four objects, namely

the function f itself, its gradient rf, the function derivative

@f=@s along a given direction s and the product [H]s of the

Hessian matrix [H] in the same direction, can be estimated as

4T, where T stands for the time of a single calculation of the

function value.

5. The FDA and crystallographic refinement

5.1. Initial scheme by Sayre±Ten Eyck±Agarwal

As follows from x4, the crucial point in the fast optimization

of a crystallographic functional is a fast calculation of structure
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factors. The original idea by Sayre (1951) of an intermediate

use of the electron density instead of direct calculation of

structure factors from the atomic parameters was developed

and realised later by Ten Eyck (1977), and this drastically

changed macromolecular crystallographic computing.

In this scheme, the ®rst step of density generation from an

atomic model does not depend on the number of structure

factors (this transition from atomic parameters to the electron

density `does not know' how this density will be used later)

and is linear with the number N of atoms. The second step of

structure-factor calculation, on the contrary, `does not know'

how the density was calculated and the amount of calculations

is practically linear with the number M of re¯ections. In total,

about

Tf � C1N � C2M ln M �6�
operations is necessary to calculate a set of structure factors

and, as a consequence, a single value of the least-squares

criterion (C1 and C2 are some constants), instead of CNM

operations for a direct calculation. Different corrections, for

example, for bulk solvent can easily be included in this way. It

can be noted also that such a fast way of calculation is quite

natural since X-rays are diffracted by electrons distributed in

the unit cell and not by pointed atoms.

An application of the FDA to the least-squares criterion

depending on atomic parameters gave immediately an

improved version (Lunin, 1978, unpublished; Lifchitz, in

Agarwal, 1981) of Agarwal's original fast algorithm for

gradient calculation (Agarwal, 1978) and suggested a general

scheme for the development of the gradient-based re®nement

programs (Lunin & Urzhumtsev, 1985; Urzhumtsev et al.,

1989). The FDA shows also that for complicated and time-

consuming problems like crystallographic re®nement one

needs to propose only a fast way of function calculation

without having the gradient problem in mind.

5.2. General scheme

This scheme can be easily extended to the general case

when independent model parameters v are no longer atomic

coordinates but some other diffraction parameters (e.g. model

description by rigid groups) and the criterion is not necessarily

the least-squares ®t of structure-factor magnitudes. The

parameters used for crystallographic calculations can be

considered as parameters of structure description at different

levels (Lunin & Urzhumtsev, 1985; Urzhumtsev et al., 1989): v
generalized parameters; q atomic model; q electron density; F

structure factors.2 An ef®cient function calculation should pass

therefore through the steps

v! q! q! F! R�F�: �7�

This algorithm also allows the contribution of criteria of other

types to be added, for example stereochemical ones or those

depending on the electron-density distribution or on the

generalized parameters (e.g. rigid-group orientation or posi-

tion). As a consequence of this scheme and the FDA, the fast

calculation of the gradient of the total function should pass

again through these steps but in inverted order:

R�F� ! rFR! rqR! rqR! rvR: �8�
In other words, the gradient calculation demands the con-

secutive recalculation of the gradient with respect to the

variables of such a chain and not its direct calculation with

respect to the original variables. The contributions of other

additional criteria are included automatically in the scheme

(8) (Urzhumtsev et al., 1989).

The FDA provides immediately the following results:

(i) for any additive criterion expressed in the terms of

structure factors, its gradient with respect to atomic param-

eters can be calculated for the time C1N � C2M ln M;

(ii) for any additive criterion expressed in terms of structure

factors, the product of its matrix of the second derivatives by

any given vector in the space of atomic parameters can be

calculated for the time C1N � C2M ln M;

(iii) if the model is described by generalized parameters and

the recalculation of the atomic parameters from them needs G

operations, then the gradient of any additive structure-factor

criterion with respect to the generalized parameters and the

product of its matrix of the second derivatives by any given

direction in the space of the generalized parameters can be

calculated by C3G� C1N � C2M ln M operations, where C3 is

a small number (C3 ~ 4);

(here a criterion is called additive if it is represented by a sum

of contributions from every parameter of this level). This

latter result is important for conjugate-gradient methods,

which need the calculation of the product of the matrix of the

second derivatives by the direction of the previous descent; as

has been shown above, this product can be calculated exactly

and practically for the same time as a single value of the

function.

5.3. Application to the calculation of the matrix of second
derivatives

Another important consequence of the FDA for crystal-

lographic re®nement is the following. The nth column of the

matrix [H] of the second derivatives represents the product of

this matrix by the direction �0; 0; . . . ; 0; 1; 0; . . . ; 0�, where 1 is

in the nth position. This means that the whole exact matrix of

the second derivatives composed from N columns (the case of

any additive structure-factor functional and a model with

independent atomic parameters) can be calculated by

THE � C1N2 � C2NM ln M �9�
operations (and K-times faster if the matrix is block diagonal

composed of K blocks of roughly equal size). Comparison of

this estimation with (3) obtained by Tronrud (1999) shows that

the `price' of the calculation of the exact matrix instead of its

2 Eventually, more levels can be introduced. For example, crystallographic
images calculated with a limited set of structure factors at a given resolution
are not the same as the exact electron density q calculated at the third level
and can be considered as a structure parameterization at the level J, after the
level F. For example, a histogram comparison can be applied to such an object
and not to an object of the level q.



approximation is the replacement of C2M by C2MN. Usually

M is of the order of N, at least for the macromolecules, and

due to the presence of the member C1N2 this replacement

does not mean the multiplication of the whole amount of

operations THT by N but rather only its duplication even in

such a non-optimized way for THE. (Note that this procedure

does not need to have at any moment the whole matrix [H]

composed of N � N elements and can always operate only

with vectors of the length N, columns of this matrix.) A faster

and more general way to calculate the exact Hessian matrix is

discussed below.

6. The chain rule and the matrix of second derivatives

6.1. General analysis

Let a function R�y1�x1; . . . ; xN�; . . . ; yM�x1; . . . ; xN��
depend on M variables y1; . . . ; yM with every ym depending in

turn on N variables x1; . . . ; xN. The chain rule

@R=@xj �
P
m

��@R=@ym��@ym=@xj�� �10�

and its consequence

@2R=@xj@xk �
P
m

P
n

��@2R=@ym@yn��@yn=@xk��@ym=@xj��

�P
m

��@R=@ym��@2ym=@xj@xk�� �11�

give

DxR � �dy=dx��DyR��dy=dx�T � �Dxy�ryR; �12�
which can be used for the recalculation of the Hessian matrix

with respect to variables x when necessary derivatives are

known for the variables y of the superior level. Here [Dxy] is a

tensor composed of M matrices [Dxy1], [Dxy2], . . . , [DxyM].

The gradient [ryR] is supposed to be known if the calculations

are carried out according to the FDA. Therefore, the opera-

tions needed to get DxR are the operations to calculate the

matrix products in (12) plus those to calculate [Dxy].

Formula (12) can be simpli®ed for a number of special cases.

Some of them are discussed below.

6.2. Special case 1: criterion expressed as a sum of individual
contributions

If the criterion R is additive, i.e. can be presented by a sum

of individual contributions, not necessarily quadratic, from the

components of the vectors y,

R�y� �P
m

f �ym�; �13�

then the matrix [DyR] becomes diagonal. An example is the

least-squares ®t of the calculated data to the experimental

ones. The maximal likelihood criterion can also be repre-

sented in the form (13) as is discussed below in x8.

If the criterion is not additive but can be expressed as

R�y� �P
m

f �ym1; ym2; . . . ; ymn� �14�

with n being a relatively small number, [DyR] becomes sparse.

Geometric criteria used in crystallography are an example.

6.3. Special case 2: linear dependence variables y and x

When the variables y depend linearly on the variables

x; y � �A�x, the second term in the formula is absent and (12)

becomes

DxR � �A��DyR��A�T : �15�
An example of such a linear dependence is the relation

between the electron density and its structure factors because

Fourier transformation is a linear operation.

6.4. Special case 3: local contribution of the variables x

Quite often variables x contribute to variables y locally, i.e.

each of x1; x2; . . . ; xN contribute only to a small number Cy of

variables yk, Cy�M. Complementarily, every yk may depend

only on a small number of Cx parameters xj, Cx� N. An

example of such dependence is the calculation of any ®eld (e.g.

an electron density) from an atomic model where atoms have

a limited radius of contribution and are separated from each

other. The matrix [dy=dx] becomes sparse giving an essential

reduction in the number of calculations.

7. Crystallographic least-squares refinement, individual
atoms

It is easy to see that the calculation of a Hessian matrix for

crystallographic criteria can pro®t the features of all particular

cases discussed above. Similarly to Tronrud (1999), the model

structure factors are supposed to be already calculated. In this

section, we estimate the number of operations necessary to

calculate the matrix of the second derivatives of the least-

squares criterion with respect to individual atomic coordinates

following the chain rule.

7.1. Step 1: matrix with respect to structure factors

The least-squares criterion R is a sum of individual contri-

butions from M independent structure factors F:

R � R�F� �P
j

wjf �Fj�; �16�

where f �Fj� � �jFjj ÿ Foj�2 and the one-dimensional index j

represents a sequential number of a structure factor in the list.

The calculation of the matrix [DFR], which is a diagonal (see

x6.2) needs C1M operations. Each diagonal element is

HF;j � �DFR�jj �
P

j

wj@
2f �Fj�=@F2

j : �17�

It should be remembered that in fact Fj are complex numbers

and HF,j, formally speaking, is a 2 � 2 matrix when repre-

sented by real variables as happens in computers. This

problem for structure factors obeying Hermitian symmetry

has been treated by Lunin & Urzhumtsev (1985) where it was

also shown that for the derivative calculation a representation

of these complex numbers by their real and imaginary parts is
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more ef®cient than the usual crystallographic representation

by their modulus and phase. We avoid repeating technical

details of this analysis.

7.2. Step 2: matrix with respect to density distribution

Since structure factors and electron density are related by

the Fourier transform

ym �
P

j

�xj exp�i2�smrj��; �18�

which is a linear operation, the second component of the sum

(12) is absent as is shown in x6.3. Here sk and rj are the

coordinates of the variables ym and xj, respectively, expressed

in corresponding coordinate systems. If y corresponds to a set

of structure-factor values and x corresponds to a set of density

values calculated at a grid, then sm represents the Miller

indices h, k, l, a complex number ym is the value of this

structure factor, and every grid point j has its coordinates rj

and the density value xj. For the transformation of electron

density into structure factors F � �A�q, the matrix [A] in (15)

becomes

�A� � �dF=dq�

�

exp�i2�s1r1� exp�i2�s2r1� . . . exp�i2�sMr1�
exp�i2�s1r2� exp�i2�s2r2� . . . exp�i2�sMr2�

..

. ..
. ..

. ..
.

exp�i2�s1rK� exp�i2�s2rK� . . . exp�i2�sMrK�

0BBBB@
1CCCCA:
�19�

With (17), the matrix product (15) becomes (see Appendix A)

�DqR� �
h�r1 � r1� h�r2 � r1� . . . h�rK � r1�
h�r1 � r2� h�r2 � r2� . . . h�rK � r2�

..

. ..
. ..

. ..
.

h�r1 � rK� h�r2 � rK� . . . h�rK � rK�

0BBB@
1CCCA; �20�

where all elements of the matrix (20) are presented by the

same function

h�r� �P
m

HF;m exp�i2�sm; r� �21�

calculated at different points r. In order to calculate this

function in a grid compatible with the number of Fourier

coef®cients M, K ~ M, the number of operations is C2M ln M

(Cooley & Tukey, 1965; Ten Eyck, 1973).

7.3. Step 3: matrix with respect to atomic parameters

The calculation of the electron-density distribution from an

atomic model is a particular case of a local dependence

discussed above (x6.4). In this case, Cy is the number of grid

points where an atom contributes (it is proportional to the

cube of the ratio of the atomic radius to the grid step) and Cx is

the number of atoms contributing to every grid point. For

usual values of atomic parameters and the grid step, the order

of these constants is about 100 and 10, respectively. If the

gradient calculation is carried out following FDA and does not

need any extra operation, then the number of operations for

the transition from [DqR] to the matrix [DqR] with respect to

the atomic parameters could be estimated as follows.

The ®rst term in (12) corresponds to the matrix

P
j;k

h�rj � rk�
@�j

@q1

@�k

@q1

P
j;k

h�rj � rk�
@�j

@q2

@�k

@q1

. . .
P
j;k

h�rj � rk�
@�j

@qN

@�k

@q1P
j;k

h�rj � rk�
@�j

@q1

@�k

@q2

P
j;k

h�rj � rk�
@�j

@q2

@�k

@q2

. . .
P
j;k

h�rj � rk�
@�j

@qN

@�k

@q2

..

. ..
. ..

. ..
.P

j;k

h�rj � rk�
@�j

@q1

@�k

@qN

P
j;k

h�rj � rk�
@�j

@q2

@�k

@qN

. . .
P
j;k

h�rj � rk�
@�j

@qN

@�k

@qN

0BBBBBBBBB@

1CCCCCCCCCA
:

�22�

For each of its N2 elements, only about C2
y derivatives are

different from 0 from the total number of K2 giving the esti-

mation of C2
yN2 operations.

The second term in (13) corresponds to elements

@2R=@qj@qk �
P
m

��@R=@�m��@2�m=@qj@qk��: �23�

Similarly to the previous consideration, each of them has no

more than Cy members @2�m=@qj@qk different from 0 giving the

estimation by CyN2 operations. This number can be smaller if

all elements (23) can be kept in memory simultaneously (for

example, in the cycle over qj, for every variable �m to which

the contribution from qj is non zero, other Lx variables

contributing to qk are determined and the contribution is

added to the matrix elements, the number of operations being

proportional to NCxCy).

In total, the number of operations for the transition

[DqR]! [DqR] is of the order of N2.

7.4. Total time for the exact matrix calculation

Summarizing, if the chain recalculation of the Hessian

matrix is used, the total number of operations necessary to

calculate the exact matrix of the second derivatives of the

crystallographic least-squares criterion with respect to the

atomic parameters is

THC � C1M � C2M ln M � C3N2 � C12M ln M � C3N2;

�24�
where C1, C2, C3 and C12 are some constants that depend

neither on the number of structure factors M nor on the

number of atoms N. This estimate is the same as (3) for an

approximate matrix where the second-order terms @2R=@F2 are

neglected from the beginning and is better than (9), which is

obtained by simple N-times calculation of the product of a

matrix by a direction following a coordinate axis.

8. Other crystallographic criteria

One more advantage of the chain scheme for matrix calcula-

tion is the same as for the gradient calculation: any transition

step `knows nothing' of how the initial gradient or matrix were

obtained and how they will be used further. This allows one to

analyse the in¯uence of every transition step and relevant

algorithms independently of other steps.



An important feature of the least-squares criterion is that

the matrix of its second derivatives with respect to the struc-

ture factors as complex numbers is a diagonal one. This means

that for any other criterion of the same type (13) as the least-

squares one, the time for the matrix calculation will be the

same.

8.1. Intensity least-squares criterion

In SHELX (Sheldrick & Schneider, 1997), the least-squares

technique is applied to structure-factor intensities and not to

the magnitudes. This criterion can be treated exactly in the

same way as is discussed above.

8.2. Phase criterion

The phase criterion introduced by Lunin & Urzhumtsev

(1985) can be used in the same way if the probability distri-

bution coef®cients A, B, C and D are considered as constants.

In the procedure suggested by Pannu et al. (1998), they are

iteratively recalculated from the atomic coordinates using the

R-free technique suggested by BruÈ nger (1992) and applied for

the phase-quality estimation by Lunin & Skovoroda (1995),

Pannu & Read (1996), Read (1997) and Pannu et al. (1998).

However, one can expect that the variation of these coef®-

cients is negligible, the coef®cients can be considered as

constant, at least for several consecutive minimization steps.

As a consequence, the computational scheme developed for

the least-squares criterion can be conserved for this criterion.

8.3. Maximum-likelihood criterion

Similar arguments can be applied for the maximum-like-

lihood criterion. This criterion, when the parameters for the

probability are ®xed, takes slightly more time for the calcu-

lation of its derivatives with respect to the structure factors

because of the more complicated function f(F) but other

calculations are exactly the same. Additionally, this criterion

can be represented in the least-squares form where structure-

factor magnitudes calculated from a model are ®tted to some

modi®ed experimental values (see e.g. Lunin & Urzhumtsev,

1999). In other words, an explicit quadratic approximation to

this criterion can be built. The variation of the magnitude

modi®cation is expected to be small (while the modi®cations

themselves can be important), the modi®cation parameters

could be considered as constants for many re®nement cycles

and the situation is reduced to the least-squares case.

8.4. General structure-factor-based criterion

In the general situation when the criterion depends on all

structure factors together and cannot be represented by a sum

of contributions from many small subsets of structure factors,

the Hessian matrix with respect to the structure factors [DFR]

is no longer diagonal and the ®rst component C1M in the total

estimation (24) should be replaced by the C1M2. While the last

component in (24) does not depend at all on the structure-

factor criterion and corresponding estimations can be kept as

they are, the second term, corresponding to the transition

from structure factors to the electron density, C2M ln M, also

becomes larger. Now the product [dF=dq][DFR][dF=dq]T

becomes (see Appendix B)P
m

hm�r1� exp�i2�smr1�
P
m

hm�r2� exp�i2�smr1� . . .
P
m

hm�rK� exp�i2�smr1�P
m

hm�r1� exp�i2�smr2�
P
m

hm�r2� exp�i2�smr2� . . .
P
m

hm�rK� exp�i2�smr2�
..
. ..

. ..
. ..

.P
m

hm�r1� exp�i2�smrK�
P
m

hm�r2� exp�i2�smrK� . . .
P
m

hm�rK� exp�i2�smrK�

0BBBBBB@

1CCCCCCA;
�25�

where the M functions

hm�r� �
P

j

HF;mj exp�i2��sj; r�� �26�

are calculated at K different points of the grid as the Fourier

transformation by M�C5M ln M� � C5M2 ln M operations.

Elements of every column, 1 � k � K, in (25) are calculated

as a Fourier series of the function gk�sm� � hm�rk�, obtained at

M points sm, 1 � m � M, of reciprocal space. Being calculated

for all K columns, this takes again of the order of

KM ln M � M2 ln M operations. The total number of

computer operations becomes

THG � C6M2 ln M � C3N2: �27�

9. Other molecular models

The described procedure can be applied for any type of atomic

model: isotropic, anisotropic, multipole models (see Hansen &

Coppens, 1978) etc. It can also be extended to other types of

geometrical objects used for the diffraction simulation instead

of independent atoms (see, for example, Kalinin, 1981).

If the independent parameters are not atomic ones (e.g.

parameters for a rigid-group re®nement), the matrix for such

non-atomic models can be calculated in the same way. Owing

to chain calculations, all previous steps are conserved and one

more step is added corresponding to the last recalculation of

the matrix DqR! DvR:

DvR � �dq=dv��DqR��dq=dv�T � �Dvq�rrrqR: �28�
The larger the blocks of related parameters, the more time is

necessary for the computation of (28). The same scheme can

be applied when generalized parameters are used not for

better molecular description but for better convergence of the

minimization process [e.g. Tronrud (1992); a similar approach

was independently developed and realised in FROG by

Urzhumtsev et al. (1989)].

10. Direct calculation of the inverted Hessian matrix

Formula (12) also gives an idea that for some special cases the

inverted matrix of the second derivatives can be obtained

directly without calculation of the Hessian matrix itself.

Indeed, if the transformation of x to y is linear, then it follows

from (15) that

�DxR�ÿ1 � �Aÿ1�T �DyR�ÿ1�Aÿ1�: �29�
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If [A] corresponds to the Fourier transformation, the inverse

operation is the inverse Fourier transform for which the matrix

[Aÿ1] can be written immediately. The matrix [DFR]ÿ1 can be

easily calculated for many crystallographic criteria, in parti-

cular for such important criteria as the least-squares or

maximum-likelihood functionals. Therefore, when the inde-

pendent parameters are density values at the grid points, the

inverse Hessian matrix can be easily and directly calculated

for these criteria as (see Appendix C):

��qR� �
u�r1 � r1� u�r2 � r1� . . . u�rK � r1�
u�r1 � r2� u�r2 � r2� . . . u�rK � r2�

..

. ..
. ..

. ..
.

u�r1 � rK� u�r2 � rK� . . . u�rK � rK�

0BBB@
1CCCA: �30�

Here again, all elements of the matrix (30) are presented by

the same function

u�r� �P
m

UF;m exp�ÿi2�sm; r� �31�

calculated at different points r (UF,m is the product of some

constant with the m-diagonal element of this inverted Hessian

matrix [DFR]ÿ1 of the crystallographic criterion with respect to

structure factors). In order to calculate this function at a grid

compatible with the number of Fourier coef®cients M, esti-

mating K ~ M, the number of operations needed is about

C2M ln M (Cooley & Tukey, 1965; Ten Eyck, 1973). This result

shows that the minimization methods of simple iteration,

usually applied to density-modi®cation procedures, can be

replaced not only by the gradient methods [Sayre (1972) and

Sayre & Toupin (1975) for the particular Sayre criterion;

Lunin (1985) for the general case] but even by the methods of

second order. In this case, the computational expenses are

practically the same as those for the simple iteration methods.

11. Discussion

An optimal algorithm for the calculation of the exact matrix of

second derivatives is suggested for crystallographic criteria

and the estimations of the CPU time necessary to calculate it

are obtained. In the case of the crystallographic least-squares

re®nement of an atomic model, the number of computer

operations is

THC � C12M ln M � C3N2; �32�
where M is the number of structure factors, N is the number of

atomic parameters and C12 and C3 are some constants that do

not depend on either M or N. This estimation is the same as

that obtained for an approximate matrix calculation neglecting

the second-order terms of the least-squares criterion with

respect to the structure factors (Tronrud, 1999). Most other

known crystallographic diffraction criteria, for example, the

maximum-likelihood criterion, need the same order of

computer operations.

This algorithm suggests step-by-step recalculation of the

matrix with respect to variables of different levels of the

molecular models (structure factors, density, atomic param-

eters etc.). The same iterative calculations are basic steps for

the fast gradient calculation (Lunin & Urzhumtsev, 1985). It

should be noted that such a method of calculation allows the

contribution from any other criterion of the same type or of

any other type of model to be added, e.g. phase criterion,

stereochemical criteria, criteria depending on the electron

density etc. Therefore, the formulae that give the expression

for the gradient (or for the Hessian matrix) of a crystal-

lographic criterion directly in terms of atomic parameters can

be useful for understanding but may be rather misleading

algorithmically.

The suggested algorithms do not explain how, in the general

case, to calculate rapidly the inverted Hessian matrix that is

needed in the minimization procedures of the second order.

Such a procedure can be suggested only for some special but

important cases as density re®nement. It can be noted that in

fact these methods do not need the matrix itself but its product

by a given vector, for example the gradient. This allows the

hope that some new numerical methods can be developed that

will be roughly linear on the number of parameters and which

will not need N2 memory elements to keep the matrix, similar

to the calculation of the product of the matrix by a given

vector following the fast differentiation algorithm.

APPENDIX A
A matrix with respect to the density distribution

Let R be an additive criterion of structure factors and HF,j

stand for the jj element of the diagonal matrix [DFR]. With

(19),

��FR��dF=dq�T

�

HF;1 exp�i2�s1r1� HF;1 exp�i2�s1r2� . . . HF;1 exp�i2�s1rK�
HF;2 exp�i2�s2r1� HF;2 exp�i2�s2r2� . . . HF;2 exp�i2�s2rK�

..

. ..
. ..

. ..
.

HF;M exp�i2�sMr1� HF;M exp�i2�sMr2� . . . HF;M exp�i2�sMrK�

0BBBB@
1CCCCA;
�33�

where r1, r2, . . . , rK is a list of vectors corresponding to the

grid points in real space. The full matrix product (15) is

��qR� � �dF=dq���FR��dF=dq�T

�

P
m

HF;m exp�i2�sm�r1 � r1��
P
m

HF;m exp�i2�sm�r2 � r1��P
m

HF;m exp�i2�sm�r1 � r2��
P
m

HF;m exp�i2�sm�r2 � r2��

..

. ..
.P

m

HF;m exp�i2�sm�r1 � rK��
P
m

HF;m exp�i2�sm�r2 � rK��

0BBBBBBB@
. . .

P
m

HF;m exp�i2�sm�rK � r1��
. . .

P
m

HF;m exp�i2�sm�rK � r2��

..

. ..
.

. . .
P
m

HF;m exp�i2�sm�rK � rK��

1CCCCCCCA: �34�

All elements of matrix (34) can be calculated as a Fourier

series at points r:



h�r� �P
m

HF;m exp�i2�sm; r�; �35�

which ®nally gives (20).

APPENDIX B
General structure-factor-based criterion

In the general case when the criterion depends on all structure

factors together and cannot be represented as a sum of

contributions from many small subsets of structure factors, the

matrix of the structure factors is no longer special. The

product [DFR][dF=dq]T becomes equal to

P
j

HF;1j exp�i2�sjr1�
P

j

HF;1j exp�i2�sjr2� . . .
P

j

HF;1j exp�i2�sjrK�P
j

HF;2j exp�i2�sjr1�
P

j

HF;2j exp�i2�sjr2� . . .
P

j

HF;2j exp�i2�sjrK�

..

. ..
. ..

. ..
.P

j

HF;Mj exp�i2�sjr1�
P

j

HF;Mj exp�i2�sjr2� . . .
P

j

HF;Mj exp�i2�sjrK�

0BBBBBBB@

1CCCCCCCA
�36�

or

h1�r1� h1�r2� . . . h1�rK�
h2�r1� h2�r2� . . . h2�rK�

..

. ..
. ..

. ..
.

hM�r1� hM�r2� . . . hM�rK�

0BBB@
1CCCA; �37�

where elements of every line m represent the function hm(r)

calculated at K different points of the grid. These functions are

calculated as the Fourier transformation

hm�r� �
P

j

HF;mj exp�i2��sj; r��: �38�

The multiplication [dF=dq] by (37) gives

[dF=dq][DFR][dF=dq]T in the form (25).

APPENDIX C
Direct calculation of the inverted Hessian matrix

If the matrix [A] corresponds to the Fourier transformation

(18), where y are structure factors and x are density values, the

inverse operation is the inverse Fourier transform for which

the matrix is

�Aÿ1� � �dy=dx�ÿ1

� dV

exp�ÿi2�s1r1� exp�ÿi2�s1r2� . . . exp�ÿi2�s1rK�
exp�ÿi2�s2r1� exp�ÿi2�s2r2� . . . exp�ÿi2�s2rK�

..

. ..
. ..

. ..
.

exp�ÿi2�sMr1� exp�ÿi2�sMr2� . . . exp�ÿi2�sMrK�

0BBBB@
1CCCCA;
�39�

where the coef®cient dV � V=�NxNyNz�, V being the volume

of the unit cell and Nx, Ny, Nz the grid numbers. If UF, j stands

for the jj diagonal element of the matrix [DyR]ÿ1, then

��FR�ÿ1�dF=dq�ÿ1

� 1

dV

UF;1 exp�ÿi2�s1r1� UF;1 exp�ÿi2�s1r2� . . . UF;1 exp�ÿi2�s1rK�
UF;2 exp�ÿi2�s2r1� UF;2 exp�ÿi2�s2r2� . . . UF;2 exp�ÿi2�s2rK�

..

. ..
. ..

. ..
.

UF;M exp�ÿi2�sMr1� UF;M exp�ÿi2�sMr2� . . . UF;M exp�ÿi2�sMrK�

0BBBB@
1CCCCA
�40�

with

�U� � d2
V ��FR�ÿ1 �41�

and ®nally

��qR�ÿ1 � ��dF=dq�ÿ1
�T ��FR�ÿ1�dF=dq�ÿ1

�

P
m

UF;m exp�ÿi2�sm�r1 � r1��
P
m

UF;m exp�ÿi2�sm�r2 � r1��P
m

UF;m exp�ÿi2�sm�r1 � r2��
P
m

UF;m exp�ÿi2�sm�r2 � r2��

..

. ..
.P

m

UF;m exp�ÿi2�sm�r1 � rK��
P
m

UF;m exp�ÿi2�sm�r2 � rK��

0BBBBBBB@
. . .

P
m

UF;m exp�ÿi2�sm�rK � r1��
. . .

P
m

UF;m exp�ÿi2�sm�rK � r2��

..

. ..
.

. . .
P
m

UF;m exp�ÿi2�sm�rK � rK��

1CCCCCCCA: �42�

Again, all elements of the matrix (42) are presented by the

same function

u�r� �P
m

UF;m exp�ÿi2�sm; r� �43�

calculated at different points r thus giving (30).
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